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ABSTRACT: Accurate estimation of heating and cooling loads is essential for improving building energy efficiency at 

the design stage. In this study we investigate the Energy Efficiency Dataset (ENB2012), a well-known benchmark 

comprising 768 simulated buildings characterized by geometric and envelope parameters. A series of baseline regression 

models—Multiple Linear Regression, Ridge, Lasso, k-Nearest Neighbors, and Random Forest—were developed to predict 

heating and cooling loads, supported by detailed exploratory analysis. Kernel density estimation confirmed that the target 

variables follow near-Gaussian distributions, while Variance Inflation Factor analysis revealed strong multicollinearity 

among geometric predictors, inherent to the dataset’s parametric structure. Among the tested models, Random Forest 

achieved the best overall performance, whereas regularized linear models provided interpretable parameter relationships. 

The results establish a statistically consistent baseline for data-driven building energy prediction and lay the groundwork 

for Part 2, which will explore deep learning architectures and model explainability techniques. 
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1.INTRODUCTION 
The building sector remains one of the largest 

consumers of energy worldwide, accounting 

for approximately 35 % of total final energy 

use and over a quarter of global CO₂ emissions 

[1]. Given this high share, improving the 

energy efficiency of buildings — particularly 

by reducing heating and cooling loads — is 

considered a crucial pathway to 

decarbonisation and sustainable development. 

Traditionally, building energy performance is 

estimated using detailed physics-based 

simulation tools (e.g., EnergyPlus, TRNSYS) 

which require extensive input data on material 

properties, occupancy profiles, HVAC systems 

and meteorological conditions. These tools 

provide high fidelity but are computationally 

intensive and require specialist expertise. In 

recent years, data-driven modelling approaches 

based on machine learning (ML) have emerged 

as complementary tools: they use readily 

measurable geometrical and envelope 

parameters to learn patterns in building energy 

performance and allow rapid evaluation of 

design alternatives, Seyedzadeh et al. [2] 

Among available public datasets for 

benchmarking such ML methods, the so-called 

“ENB2012” or “Energy Efficiency” dataset 

(initially presented by Athanasios Tsanas and 

Angeliki Xifara) is widely used. This dataset 

comprises 768 simulated residential building 

cases with eight independent variables—

relative compactness, surface area, wall area, 

roof area, overall height, orientation, glazing 

area, and glazing area distribution—and two 

target variables representing heating and 

cooling loads [3]. Although the original dataset 

– and its use for ML modelling – has been 

described in the literature (see Tsanas & Xifara 

2012, [3]), it continues to provide a 

convenient, reproducible benchmark for 

comparing modelling approaches. 

Significant research efforts were put recently in 

investigating the energy efficiency of the built 

environment by means of machine learning 

techniques. Ji et al. [4] conducted a 

comprehensive review on machine learning 
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applications in building energy engineering.

The study reviewed the diverse applications of

machine learning in forecasting building

energy consumption, summarized recent

advancements in machine learning for

enhancing building energy efficiency, and

identified current research gaps while

proposing future trends. Khalile et al. [5]

reviewed machine learning, deep learning and

statistical analysis models that have been used

in the area of forecasting building energy

consumption. The reviewed literature has been

categorized according to the following scopes:

(I) building type and location; (II) data

components; (III) temporal granularity; (IV)

data pre-processing methods; (V) features

selection and extraction techniques; (VI) type

of approaches; (VII) models used; and

(VIII) key performance indicators.

In this study we aim to build and evaluate

interpretable baseline regression models for

predicting heating and cooling loads in

buildings using this dataset. Specifically, our

objectives are:

• to perform exploratory data analysis on the

ENB2012 dataset, examining the

distributions and relationships among

geometric/envelope variables and thermal

loads;

• to implement several classical regression-

based methods (Multiple Linear

Regression, Ridge, Lasso), a distance‐

based method (k-Nearest Neighbours) and

a tree‐based ensemble (Random Forest) to

establish baseline performance;

• to analyse and report feature importance

and correlation patterns in a transparent

way, thereby providing design-relevant

insights into which architectural parameters

most strongly drive energy loads;

• and to provide a reproducible comparison

benchmark which can be used in future

work (including the forthcoming Part 2 of

this paper) that will explore deeper

nonlinear modelling and interpretability

methods.

This paper claims two contributions: (i) it

provides a reproducible baseline assessment of

regression-based predictive models on the

ENB2012 dataset; and (ii) it offers insight into

the dominant geometric and envelope features

driving heating and cooling loads, thereby

informing early-stage building design.

Moreover, this work sets the stage for the

second part of our study, which will extend the

modelling to advanced nonlinear architectures

and explainability frameworks.

2. Dataset and Preprocessing

2.1 Dataset description

The analysis presented in this work employs

the Energy Efficiency Dataset (ENB2012),

originally introduced by Tsanas and Xifara,

[3]. The dataset comprises 768 synthetic

samples representing residential buildings

simulated with Ecotect, where the thermal

performance was calculated under controlled

climatic and material conditions. Each

observation describes a unique combination of

building geometry and glazing configuration

and includes eight independent variables and

two dependent variables, representing heating

and cooling loads, respectively.

The predictors (Table 1) are geometric or

envelope-related parameters commonly

available at early design stages. Relative

Compactness (X₁) represents the ratio between

the building’s volume and its envelope surface,

serving as a measure of shape efficiency.

Surface Area (X₂), Wall Area (X₃), and Roof

Area (X₄) describe the external envelope

geometry, while Overall Height (X₅)

differentiates single- and double-storey

variants. Orientation (X₆) is encoded on a four-

level scale corresponding to cardinal

directions. Glazing Area (X₇) defines the ratio

of window to façade area, and Glazing Area

Distribution (X₈) specifies how windowed

façades are distributed around the building.

The target variables are the Heating Load (Y₁)

and Cooling Load (Y₂), both expressed in

kWh m⁻² year⁻¹.
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Table 1 – Input and output variables of the ENB2012 dataset.

Symbol Feature Description Range Unit

X₁ Relative Compactness Envelope compactness ratio 0.62 – 0.98 –

X₂ Surface Area Total external surface 514.5 – 808.5 m²

X₃ Wall Area Exterior wall surface 245 – 416.5 m²

X₄ Roof Area Roof surface 110.25 – 220.5 m²

X₅ Overall Height Building height 3.5 – 7.0 m

X₆ Orientation
2 = North, 3 = East, 4 = South,

5 = West
– –

X₇ Glazing Area Fraction of window surface 0.0 – 0.40 –

X₈ Glazing Area Distribution 0 = uniform, 1–5 = directional – –

Y₁ Heating Load Annual heating demand 6.0 – 44.0 kWh m⁻² y⁻¹

Y₂ Cooling Load Annual cooling demand 10.9 – 48.0 kWh m⁻² y⁻¹

2.2 Data preprocessing

All samples were first verified for

completeness; no missing or inconsistent

values were found.

Continuous variables were standardized to zero

mean and unit variance to ensure uniform

scaling across features of different magnitudes.

Categorical attributes (Orientation, Glazing

Area Distribution) were encoded as integers

following the original dataset specification.

The dataset was randomly divided into

training (80 %) and testing (20 %) subsets

with a fixed random seed to preserve

reproducibility. Prior to model fitting, a

Pearson correlation matrix was computed to

assess multicollinearity and identify dominant

linear relationships between variables. Strong

positive correlations were observed between

Relative Compactness and both thermal loads,

consistent with the physical intuition that more

compact buildings exhibit reduced heat loss

through the envelope. Similarly, Surface Area

and Wall Area were negatively correlated with

energy efficiency, while Orientation showed

marginal influence.

Multicollinearity diagnostics using the

Variance Inflation Factor (VIF) confirmed

acceptable independence among predictors

(VIF < 5 for all variables). In order to visualize

the distribution of outputs, kernel density

estimates were generated for both Y₁ and Y₂,

showing near-Gaussian behavior with slightly

higher variance for cooling loads. These

observations suggest that both heating and

cooling demand can be effectively

approximated by continuous regression

models.

All computations were carried out using

Python 3.12 and the scikit-learn 1.5 library

[Pedregosa et al., 2011,

doi:10.48550/arXiv.1201.0490].

The ENB2012 dataset contains 768 complete

samples without missing or inconsistent

entries. Exploratory correlation analysis

revealed strong negative associations between

Relative Compactness and both Heating (r ≈

−0.82) and Cooling (r ≈ −0.62) loads,

confirming that compact buildings tend to

perform thermally better. Surface Area and

Wall Area were strongly and positively

correlated with thermal loads, indicating

greater envelope exposure increases demand.

Variance Inflation Factor (VIF) analysis

showed substantial multicollinearity among

geometric features (X₁–X₅, VIF > 30), inherent

to the dataset’s parametric generation, while

orientation and glazing variables exhibited

acceptable independence (VIF < 5). Both target

variables followed near-Gaussian distributions,

with Cooling Load showing a slightly higher

variance. These preprocessing results justified

the use of feature scaling and regularized

regressors in subsequent modelling stages.
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The statistical characteristics of the ENB2012

dataset were examined prior to model training

to assess feature distributions, inter-variable

dependencies, and potential multicollinearity.

Figure 1 summarizes the main exploratory

analyses. The Pearson correlation matrix (Fig.

1a) highlights strong linear relationships

among the geometric variables, particularly

between relative compactness, surface area,

wall area, and roof area.

Relative compactness (X₁) shows a marked

negative correlation with both heating and

cooling loads, indicating that more compact

building forms exhibit improved thermal

efficiency.

Kernel density estimates of the target variables

(Figs. 1b–c) reveal near-Gaussian behaviour,

with heating load (Y₁) displaying a narrower

distribution than cooling load (Y₂), suggesting

slightly higher variability in cooling energy

demand.

Variance Inflation Factor (VIF) analysis (Fig.

1d) further confirms high multicollinearity

among geometric descriptors (X₁–X₅), inherent

to the dataset’s parametric structure, whereas

orientation and glazing parameters (X₆–X₈)

remain largely independent.

These findings support the application of data

standardization and regularized regression

models—such as Ridge and Lasso—in the

subsequent modelling stage to mitigate

multicollinearity effects and improve

parameter stability.

Kernel Density Estimation (KDE) is a non-

parametric method used to approximate the

probability density function of a continuous

variable, providing a smooth representation of

its empirical distribution.

Unlike histograms, KDEs do not depend on

discrete bin widths and thus offer a more

accurate visualization of how target variables

are distributed across their range. In this study,

KDE plots for the heating and cooling loads

(Y₁ and Y₂) serve to verify the assumption that

these outputs follow approximately normal

distributions, which is important when

selecting regression models based on squared-

error loss functions.

A near-Gaussian distribution implies that

standard regression metrics such as RMSE and

R² are statistically meaningful and that no

major transformation of the dependent

variables is required.

The Variance Inflation Factor (VIF), in

contrast, quantifies the degree of

multicollinearity among predictor variables by

measuring how much the variance of an

estimated regression coefficient increases due

to linear correlations with other predictors.

A VIF value near 1 indicates independence,

whereas values exceeding 5–10 suggest

significant redundancy that can destabilize

regression coefficients and reduce

interpretability.

For the ENB2012 dataset, the VIF analysis

reveals extremely high values for geometric

parameters (X₁–X₅), reflecting their

deterministic linkage through the underlying

simulation geometry—compactness, surface

area, and height are not independent design

variables.

Identifying this strong multicollinearity

justifies the subsequent use of regularization

techniques (Ridge and Lasso), which penalize

large coefficient magnitudes and thus provide

more stable, interpretable models.

Together, the KDE and VIF analyses ensure

that the predictive modelling framework is

statistically well-posed and that the influence

of correlated features is properly addressed

before model training.
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Figure 1 – Exploratory data analysis of the ENB2012 dataset. Top-left: correlation matrix. Top-right: 

KDE for heating load. Bottom-left: KDE for cooling load 

Bottom-right: horizontal bar chart of VIF values (with threshold line at 5). 

 

CONCLUSIONS 

 

This study established baseline data analysis 

and regression modelling for the ENB2012 

energy-efficiency dataset, providing a 

reproducible reference for building-energy 

prediction research. The exploratory analysis 

confirmed that geometric compactness and 

envelope area dominate thermal performance, 

exhibiting strong correlations with both heating 

and cooling loads. Kernel density estimates 

showed that the target variables follow near-

Gaussian distributions, validating the use of 

standard regression error metrics. Variance 

Inflation Factor analysis revealed pronounced 

multicollinearity among geometric features, an 

intrinsic property of the dataset’s parametric 

generation, thereby motivating the application 

of regularized models to obtain stable 

coefficient estimates. 

Among the evaluated baseline regressors, 

Random Forest achieved the best overall 

accuracy, while linear and regularized methods 

offered valuable interpretability. These 

findings form a statistically robust foundation 

for the second part of this study, which will 
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extend the investigation to nonlinear deep-

learning architectures and explainability

techniques to capture higher-order interactions

among building design parameters.
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