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ABSTRACT: Accurate estimation of heating and cooling loads is essential for improving building energy efficiency at
the design stage. In this study we investigate the Energy Efficiency Dataset (ENB2012), a well-known benchmark
comprising 768 simulated buildings characterized by geometric and envelope parameters. A series of baseline regression
models—Multiple Linear Regression, Ridge, Lasso, k-Nearest Neighbors, and Random Forest—were developed to predict
heating and cooling loads, supported by detailed exploratory analysis. Kernel density estimation confirmed that the target
variables follow near-Gaussian distributions, while Variance Inflation Factor analysis revealed strong multicollinearity
among geometric predictors, inherent to the dataset’s parametric structure. Among the tested models, Random Forest
achieved the best overall performance, whereas regularized linear models provided interpretable parameter relationships.
The results establish a statistically consistent baseline for data-driven building energy prediction and lay the groundwork
for Part 2, which will explore deep learning architectures and model explainability techniques.
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1.INTRODUCTION performance and allow rapid evaluation of
The building sector remains one of the largest design alternatives, Seyedzadeh et al. [2]
consumers of energy worldwide, accounting Among  available public  datasets  for
for approximately 35 % of total final energy benchmarking such ML methods, the so-called
use and over a quarter of global CO- emissions “ENB2012” or “Energy Efficiency” dataset
[1]. Given this high share, improving the (initially presented by Athanasios Tsanas and
energy efficiency of buildings — particularly Angeliki Xifara) is widely used. This dataset
by reducing heating and cooling loads — is comprises 768 simulated residential building
considered a  crucial  pathway  to cases with eight independent variables—
decarbonisation and sustainable development. relative compactness, surface area, wall area,
Traditionally, building energy performance is roof area, overall height, orientation, glazing
estimated using detailed  physics-based area, and glazing area distribution—and two
simulation tools (e.g., EnergyPlus, TRNSYS) target variables representing heating and
which require extensive input data on material cooling loads [3]. Although the original dataset
properties, occupancy profiles, HVAC systems — and its use for ML modelling — has been
and meteorological conditions. These tools described in the literature (see Tsanas & Xifara
provide high fidelity but are computationally 2012, [3]), it continues to provide a
intensive and require specialist expertise. In convenient,  reproducible  benchmark  for
recent years, data-driven modelling approaches comparing modelling approaches.

based on machine learning (ML) have emerged Significant research efforts were put recently in
as complementary tools: they use readily investigating the energy efficiency of the built
measurable  geometrical and  envelope environment by means of machine learning
parameters to learn patterns in building energy techniques. Ji et al. [4] conducted a

comprehensive review on machine learning
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applications in building energy engineering.
The study reviewed the diverse applications of
machine learning in forecasting building
energy consumption, summarized recent
advancements in  machine learning for
enhancing building energy efficiency, and
identified current research gaps while
proposing future trends. Khalile et al. [5]
reviewed machine learning, deep learning and
statistical analysis models that have been used
in the area of forecasting building energy
consumption. The reviewed literature has been
categorized according to the following scopes:
() building type and location; (Il) data
components; (I11) temporal granularity; (IV)
data pre-processing methods; (V) features
selection and extraction techniques; (VI) type
of approaches; (VII) models used; and
(V1) key performance indicators.

In this study we aim to build and evaluate
interpretable baseline regression models for
predicting heating and cooling loads in
buildings using this dataset. Specifically, our
objectives are:

« to perform exploratory data analysis on the

ENB2012  dataset, examining  the
distributions and relationships among
geometric/envelope variables and thermal

loads;
o to implement several classical regression-
based methods  (Multiple Linear

Regression, Ridge, Lasso), a distance-
based method (k-Nearest Neighbours) and
a tree-based ensemble (Random Forest) to
establish baseline performance;

e to analyse and report feature importance
and correlation patterns in a transparent
way, thereby providing design-relevant
insights into which architectural parameters
most strongly drive energy loads;

e and to provide a reproducible comparison
benchmark which can be used in future
work (including the forthcoming Part 2 of
this paper) that will explore deeper
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nonlinear modelling and interpretability
methods.

This paper claims two contributions: (i) it
provides a reproducible baseline assessment of
regression-based predictive models on the
ENB2012 dataset; and (ii) it offers insight into
the dominant geometric and envelope features
driving heating and cooling loads, thereby
informing  early-stage  building  design.
Moreover, this work sets the stage for the
second part of our study, which will extend the
modelling to advanced nonlinear architectures
and explainability frameworks.

2. Dataset and Preprocessing

2.1 Dataset description

The analysis presented in this work employs
the Energy Efficiency Dataset (ENB2012),
originally introduced by Tsanas and Xifara,
[3]. The dataset comprises 768 synthetic
samples representing residential buildings
simulated with Ecotect, where the thermal
performance was calculated under controlled
climatic and material conditions. Each
observation describes a unique combination of
building geometry and glazing configuration
and includes eight independent variables and
two dependent variables, representing heating
and cooling loads, respectively.

The predictors (Table 1) are geometric or
envelope-related parameters commonly
available at early design stages. Relative
Compactness (X1) represents the ratio between
the building’s volume and its envelope surface,
serving as a measure of shape efficiency.
Surface Area (X2), Wall Area (Xs3), and Roof
Area (Xa4) describe the external envelope
geometry, while Overall Height (X5)
differentiates  single- and double-storey
variants. Orientation (Xs) is encoded on a four-
level scale corresponding to cardinal
directions. Glazing Area (X7) defines the ratio
of window to facade area, and Glazing Area
Distribution (Xs) specifies how windowed
facades are distributed around the building.
The target variables are the Heating Load (Y1)
and Cooling Load (Y:), both expressed in
kWh m™2 year.
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Table 1 — Input and output variables of the ENB2012 dataset.

|SymboIHFeature HDescription H Range H Unit \
X |Relative Compactness  |Envelope compactness ratio | 0.62-0.98 | - |
X  |Surface Area | Total external surface | 5145-8085 | m2 |
|X3 HWaII Area HExterior wall surface H 245 -416.5 H m2 \
Xs  |Roof Area IRoof surface [110.25-2205] m? |
Xs | Overall Height Building height | 35-70 || m |
X Orientation g EVI\\l/ggtth' 3 = East, 4 = South, - -

X, | Glazing Area |Fraction of window surface | 0.0-040 | - |
IXs | Glazing Area Distribution|(0 = uniform, 1-5 = directional | — I -
Y, | Heating Load |Annual heating demand | 6.0-440 |kWhm=y"
|Y2 HCooIing Load HAnnuaI cooling demand H 10.9-48.0 HkWh m? y—l\

2.2 Data preprocessing

All  samples were first
completeness; no missing or
values were found.

Continuous variables were standardized to zero
mean and unit variance to ensure uniform
scaling across features of different magnitudes.
Categorical attributes (Orientation, Glazing
Area Distribution) were encoded as integers
following the original dataset specification.
The dataset was randomly divided into
training (80 %) and testing (20 %) subsets
with a fixed random seed to preserve
reproducibility. Prior to model fitting, a
Pearson correlation matrix was computed to
assess multicollinearity and identify dominant
linear relationships between variables. Strong
positive correlations were observed between
Relative Compactness and both thermal loads,
consistent with the physical intuition that more
compact buildings exhibit reduced heat loss
through the envelope. Similarly, Surface Area
and Wall Area were negatively correlated with
energy efficiency, while Orientation showed
marginal influence.

Multicollinearity ~ diagnostics  using  the
Variance Inflation Factor (VIF) confirmed
acceptable independence among predictors
(VIF < 5 for all variables). In order to visualize
the distribution of outputs, kernel density
estimates were generated for both Y: and Y-,
showing near-Gaussian behavior with slightly

verified for
inconsistent
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higher variance for cooling loads. These
observations suggest that both heating and

cooling demand can be effectively
approximated by continuous regression
models.

All computations were carried out using

Python 3.12 and the scikit-learn 1.5 library
[Pedregosa et al., 2011,
d0i:10.48550/arXiv.1201.0490].

The ENB2012 dataset contains 768 complete
samples without missing or inconsistent
entries.  Exploratory correlation analysis
revealed strong negative associations between
Relative Compactness and both Heating (r =
—0.82) and Cooling (r = —0.62) loads,
confirming that compact buildings tend to
perform thermally better. Surface Area and
Wall Area were strongly and positively
correlated with thermal loads, indicating
greater envelope exposure increases demand.
Variance Inflation Factor (VIF) analysis
showed substantial multicollinearity among
geometric features (Xi—Xs, VIF > 30), inherent
to the dataset’s parametric generation, while
orientation and glazing variables exhibited
acceptable independence (VIF < 5). Both target
variables followed near-Gaussian distributions,
with Cooling Load showing a slightly higher
variance. These preprocessing results justified
the use of feature scaling and regularized
regressors in subsequent modelling stages.
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The statistical characteristics of the ENB2012
dataset were examined prior to model training
to assess feature distributions, inter-variable
dependencies, and potential multicollinearity.
Figure 1 summarizes the main exploratory
analyses. The Pearson correlation matrix (Fig.
1a) highlights strong linear relationships
among the geometric variables, particularly
between relative compactness, surface area,
wall area, and roof area.
Relative compactness (Xi) shows a marked
negative correlation with both heating and
cooling loads, indicating that more compact
building forms exhibit improved thermal
efficiency.

Kernel density estimates of the target variables
(Figs. 1b—) reveal near-Gaussian behaviour,
with heating load (Y:) displaying a narrower
distribution than cooling load (Y2), suggesting
slightly higher variability in cooling energy
demand.

Variance Inflation Factor (VIF) analysis (Fig.
1d) further confirms high multicollinearity
among geometric descriptors (X:—Xs), inherent
to the dataset’s parametric structure, whereas
orientation and glazing parameters (Xe—Xs)
remain largely independent.
These findings support the application of data
standardization and regularized regression
models—such as Ridge and Lasso—in the
subsequent modelling stage to mitigate
multicollinearity ~ effects and  improve
parameter stability.

Kernel Density Estimation (KDE) is a non-
parametric method used to approximate the
probability density function of a continuous
variable, providing a smooth representation of
its empirical distribution.

Unlike histograms, KDEs do not depend on
discrete bin widths and thus offer a more
accurate visualization of how target variables
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are distributed across their range. In this study,
KDE plots for the heating and cooling loads
(Y1 and Y2) serve to verify the assumption that
these outputs follow approximately normal
distributions, which is important when
selecting regression models based on squared-
error loss functions.

A near-Gaussian distribution implies that
standard regression metrics such as RMSE and
R? are statistically meaningful and that no
major transformation of the dependent
variables is required.

The Variance Inflation Factor (VIF), in
contrast,  quantifies the  degree  of
multicollinearity among predictor variables by
measuring how much the variance of an
estimated regression coefficient increases due
to linear correlations with other predictors.
A VIF value near 1 indicates independence,
whereas values exceeding 5-10 suggest
significant redundancy that can destabilize
regression coefficients and reduce
interpretability.

For the ENB2012 dataset, the VIF analysis
reveals extremely high values for geometric
parameters (Xi—Xs), reflecting their
deterministic linkage through the underlying
simulation geometry—compactness, surface
area, and height are not independent design
variables.

Identifying  this strong  multicollinearity
justifies the subsequent use of regularization
techniques (Ridge and Lasso), which penalize
large coefficient magnitudes and thus provide
more stable, interpretable models.
Together, the KDE and VIF analyses ensure
that the predictive modelling framework is
statistically well-posed and that the influence
of correlated features is properly addressed
before model training.
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Exploratory Data Analysis and Multicollinearity Diagnostics (ENB2012)
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Figure 1 — Exploratory data analysis of the ENB2012 dataset. Top-left: correlation matrix. Top-right:
KDE for heating load. Bottom-left: KDE for cooling load
Bottom-right: horizontal bar chart of VIF values (with threshold line at 5).

CONCLUSIONS

This study established baseline data analysis
and regression modelling for the ENB2012
energy-efficiency  dataset, providing a
reproducible reference for building-energy
prediction research. The exploratory analysis
confirmed that geometric compactness and
envelope area dominate thermal performance,
exhibiting strong correlations with both heating
and cooling loads. Kernel density estimates
showed that the target variables follow near-
Gaussian distributions, validating the use of
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standard regression error metrics. Variance
Inflation Factor analysis revealed pronounced
multicollinearity among geometric features, an
intrinsic property of the dataset’s parametric
generation, thereby motivating the application

of regularized models to obtain stable
coefficient estimates.
Among the evaluated baseline regressors,

Random Forest achieved the best overall
accuracy, while linear and regularized methods
offered valuable interpretability. These
findings form a statistically robust foundation
for the second part of this study, which will
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extend the investigation to nonlinear deep-

learning architectures and explainability
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